INTELLIGENT AGENTS

Chapter 2

Reminders

Assignment 0 (lisp refresher) due 9/8 account forms from 727 Soda.

Lisp/emacs tutorial: 10-12 and 3.30-4.30 on Fri 9/2, 273 Soda

My office hours on Tuesday moved to 4.30-5.30

Section swapping proposal

Blaine to teach 106 (Wed 4-5) instead of 104 (Wed 12-1)

- John to teach 104 (Wed 12-1) instead of 106 (Wed 4-5)
 - \Rightarrow non-CS students in 104 switch to 106

Outline

- \diamond Agents and environments
- \diamond Rationality
- ♦ PEAS (Performance measure, Environment, Actuators, Sensors)
- \diamondsuit Environment types
- \diamondsuit Agent types

Agents include humans, robots, softbots, thermostats, etc.

The agent function maps from percept histories to actions:

 $f: \mathcal{P}^* \to \mathcal{A}$

The agent program runs on the physical architecture to produce f

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]

Actions: Left, Right, Suck, NoOp

A vacuum-cleaner agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], $[A, Clean]$	Right
[A, Clean], $[A, Dirty]$	Suck
:	E

function REFLEX-VACUUM-AGENT([location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

What is the **right** function? Can it be implemented in a small agent program?

Rationality

Fixed performance measure evaluates the environment sequence

- one point per square cleaned up in time T? **WYAFIWYG**
- one point per clean square per time step, minus one per move?
- penalize for > k dirty squares?

A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date

 $\mathsf{Rational} \neq \mathsf{omniscient}$

– percepts may not supply all relevant information Rational \neq clairvoyant

– action outcomes may not be as expected Hence, rational \neq successful

Rational \Rightarrow exploration, learning, autonomy

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

Performance measure??

Environment??

Actuators??

Sensors??

PEAS

To design a rational agent, we must specify the task environment

Consider, e.g., the task of designing an automated taxi:

<u>Performance measure</u>?? safety, destination, profits, legality, comfort, ...

Environment?? US streets/freeways, traffic, pedestrians, weather, ...

<u>Actuators</u>?? steering, accelerator, brake, horn, speaker/display, ...

<u>Sensors</u>?? video, accelerometers, gauges, engine sensors, keyboard, GPS, ...

Internet shopping agent

Performance measure??

Environment??

Actuators??

Sensors??

Internet shopping agent

<u>Performance measure</u>?? price, quality, appropriateness, efficiency

<u>Environment</u>?? current and future WWW sites, vendors, shippers

<u>Actuators</u>?? display to user, follow URL, fill in form

<u>Sensors</u>?? HTML pages (text, graphics, scripts)

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??				
<u>Deterministic</u> ??				
Episodic??				
<u>Static</u> ??				
Discrete??				
Single-agent??				

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??				
Episodic??				
<u>Static</u> ??				
Discrete??				
Single-agent??				

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??				
<u>Static</u> ??				
Discrete??				
Single-agent??				

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??				
Discrete??				
Single-agent??				

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??				
Single-agent??				

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
<u>Deterministic</u> ??	Yes	No	Partly	No
Episodic??	No	No	No	No
<u>Static</u> ??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??				

	Peg Solitaire	Backgammon	Internet shopping	Taxi
Observable??	Yes	Yes	No	No
Deterministic??	Yes	No	Partly	No
Episodic??	No	No	No	No
Static??	Yes	Semi	Semi	No
Discrete??	Yes	Yes	Yes	No
Single-agent??	Yes	No	Yes (except auctions)	No

The environment type largely determines the agent design

The real world is (of course) partially observable, stochastic, sequential, dynamic, continuous, multi-agent

Agent types

Four basic types in order of increasing generality:

- simple reflex agents
- reflex agents with state
- goal-based agents
- utility-based agents

All these can be turned into learning agents

Example

```
function REFLEX-VACUUM-AGENT([location,status]) returns an action
```

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

```
(setq joe (make-agent :body (make-agent-body)
    :program
    #'(lambda (percept)
        (destructuring-bind (location status) percept
            (cond ((eq status 'Dirty) 'Suck)
                  ((eq location 'A) 'Right)
                  ((eq location 'B) 'Left))))))
```

Problems with simple reflex agents

Simple reflex agents fail in partially observable environments

E.g., suppose location sensor is missing

Agent (presumably) *Sucks* if *Dirty*; what if *Clean*?

 \Rightarrow infinite loops are unavoidable

Randomization helps (why??), but not that much

Example

```
function REFLEX-VACUUM-AGENT([location,status]) returns an action static: last_A, last_B, numbers, initially \infty
```

```
if status = Dirty then ...
```

```
:program
(let ((last-A infinity) (last-B infinity))
  (defun reflex-vacuum-agent-with-state (percept)
    (destructuring-bind (location status) percept
      (incf last-A) (incf last-B)
      (cond
        ((eq status 'Dirty)
        (if (eq location 'A) (setq last-A 0) (setq last-B 0))
        'Suck)
        ((eq location 'A) (if (> last-A 3) 'Right 'NoOp))
        ((eq location 'B) (if (> last-A 3) 'Left 'NoOp))))))
    #'reflex-vacuum-agent-with-state)
```


Summary

Agents interact with environments through actuators and sensors

The agent function describes what the agent does in all circumstances

The performance measure evaluates the environment sequence

A perfectly rational agent maximizes expected performance

Agent programs implement (some) agent functions

PEAS descriptions define task environments

Environments are categorized along several dimensions: observable? deterministic? episodic? static? discrete? single-agent?

Several basic agent architectures exist:

reflex, reflex with state, goal-based, utility-based